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Fractal and chaotic behavior of circular cellular automata
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A new type of circular cellular automata~CCA! has been introduced. The evolutions of the CCA obtained by
the clockwise, anticlockwise, and scanning line-by-line site sequence in the successively growing rings divided
from a square lattice are studied. The evolution seems to form a twisty fishnet when the CCA are grown by the
first two sequences. Sierpinski triangle gasket or the modulated ones are formed in the fourth quadrant of the
CCA grown by the line scanning sequence. Fractal analysis is used to characterize the relationships between
the pattern formed and the initial position of the growing ring and it is found that the pattern is very sensitive
to the initial growth condition, showing the chaotic behavior.
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I. INTRODUCTION

Cellular automata~CA! are nonlinear systems in whic
space, time, and states are discrete. Their enormous co
tation speed and complex dynamical behavior make th
widely applicable to modeling natural phenomena. Gen
ally, CA may be described in terms of two concepts: config
ration and transition rule. Various rules produce differe
evolution patterns. Wolfram@1# studied all the evolutions o
the one dimensional linear CA~LCA! and found that they
can be reduced to four classes: homogeneous state~class I!,
separated simple stable or periodic structures~class II!, cha-
otic pattern ~class III! and complex localized structure
~sometimes long-lived! ~class IV!. Sales, Martins, and Mor
eira @2# found that the Hurst exponent of the spatial a
temporal configurations of LCA can detect the existence
long-range correlation in the evolution patterns of class
and a subclass of class II. The relationship between LCA
fractals has been given by Willson@3,4# and that between
LCA and multifractal by Takahashi@5#. CA can also be two
dimensional such as the famous game of life@6#. Recently,
CA have been widely used for modeling crystal grow
earthquake@7#, excitable media@8#, granular flow@9#, diffu-
sion @10#, traffic flow @11,12#, and other problems of sel
organization.

Most of the LCA can be used to simulate one-dimensio
growth and flow, but the actual growth and flow usually ha
pen in two- or three-dimensional space. Here, we prese
model of a circular cellular automata~CCA! grown on two-
dimensional lattice with a simple transition rule. This CCA
sensitive to the sequence for selecting sites in the suc
sively growing rings divided from a square lattice and th
initial positions. We have suggested a random succes
growth model with a suitable crowded condition for simula
ing the fractal crystallization in an amorphous film a
colony growth patterns@13,14#. Now the CCA is a determin-
istic model, which can generate fractals, including the
mous Sierpinski triangle gasket. The fractal dimension
be used to characterize the patterns produced by the C
and to show their chaotic behavior.
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II. MODEL OF THE CIRCULAR AUTOMATON

It is well known that the original one-dimensional line
cellular automata were grown line by line in one directi
and the sites in a line are updated in parallel. But CCA i
two-dimensional model, so that the space is divided by c
tinuously growing rings with the same width. All the sites
a ring are considered to be grown successively. In this C
model, the growth in each ring is not synchronous and d
ferent sequences for selecting sites are applied. The state
local site depends not only on the states of sites at the
period but also on the states of the nearest sites at cu
period.

The CCA are constructed as follows: A seed with a va
of one ~indicated by a dark dot! is placed at the center of
square lattice. All the sites in the ring~i 211d, i 1d# with a
width of one~i 51,2, . . . ,i 1d is the inner radius of the rings
and 0<d,1! are the next sites to be considered to grow
not to grow. A local site is considered to grow~change from
0 to 1! only when just one nearest site is a dark dot amo
the four nearest sites, and is considered not to grow when
site~too alone! or two sites~too crowded! are dark dots. This
condition can be called the intermediate crowded conditi

It is well known that the evolution of LCA is determine
by the update rule in parallel, i.e., the influence of neighb
ing sites in a line is not considered. Contrary to LCA, a
other important condition of this CCA is the sequence
selecting sites in each ring of~i 211d, i 1d#. Three se-
quences~clockwise, anticlockwise, and scanning line by lin
from above to below and from left to right in the ring! are
considered in this paper. The purpose of this paper is
introduce the CCA model with the sequences for select
sites, so that the intermediate crowded condition can be
cluded. It is found that complex and interesting patterns
be formed with the change of the simple selecting seque
In the following text, we call the third sequence as line sca
ning for convenience.

In this model, there are two variable initial condition
One is the initial value ofd, and the other is the selectin
sequence in the rings. Figure 1 is the sketch of this mo
with d50 grown by the line scanning sequence, where I,
III, and IV indicate the first, second, third, and fourth qua
©2001 The American Physical Society05-1
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rants. The numbers labeled in the figure are the serial n
bers of rings. There are four sites in the first ring of~0, 1#,
and 8, 16, 20, 32, 32, . . . ,sites in next rings (i
52,3,4,5, . . . ) whend50. The dark dots and the open do
represent those sites grown or not, respectively.a, b, c, d, e,
f, g in the sixth ring show the site sequence determined
the line scanning sequence. The grown sites in the first qu
rant and the third quadrant show mirror symmetry, wh
those in the second quadrant and the fourth one are no
the second quadrant, no more sites are grown except the
on X axis andY axis or a part of sites neighboring these ax

III. RESULTS AND DISCUSSION

Figures 2~a! and 2~b! are the evolution of CCA with
d50, wherei<365. The grown sequences are clockwise a
line scanning in the rings, respectively. Each quadrant of F
2~a! seems to be a twisty fishnet and the figure displays
rotation symmetry. The anticlockwise figure shows mirr
symmetry to that of the clockwise pattern. As to the F
2~b!, although the first quadrant is the same as that of F
2~a! and the third quadrant is the same as that of anticlo
wise pattern, most of the sites in the second quadrant ca
grow and interestingly, the pattern in the fourth quadran
the famous Sierpinski triangle gasket. Figure 2~b! itself has a
symmetric mirror at an angle of 45° with theX axis.

Figures 3~a!, 3~b!, 3~c!, 3~d!, 3~e!, and 3~f! are the evolu-
tions of CCA in the 4th quadrant withd50.04, 0.07, 0.12,
0.17, 0.20, 0.27 grown by the line scanning sequence in
rings. The evolution changes due to the sites and their n
ber in each ring are different from that ofd50. The patterns
formed in the first quadrant and the third are similar to F
2~b!. The patterns in the fourth quadrant are composed
many big or small empty triangles different from the regu
Sierpinski gasket and can be called as modulated Sierpi
gasket. They are symmetric with a mirror axis at 45° with t
X axis. All the second quadrants with variousd are nearly
empty. If the sequence for selecting sites in the second q
rant is changed to line scanning from below to above a
from left to right, we will obtain the same patterns as that
Fig. 3 instead of the nearly empty quadrant shown in F
2~b!. The same patterns can be obtained by the vertical

FIG. 1. Sketch of circular cellular automata~CCA! model.
03610
-

y
d-

In
ites
.

d
g.
°

r
.
.
-
ot

s

e
-

.
of
r
ki

e

d-
d
f
.
e

scanning sequence in the first and third quadrants. So we
get the modulated Siepinski gasket with 90° rotation symm
try with various sequence of selecting sites in the first, s
ond, third, and fourth quadrants.

We simulate CCA with the above clockwise and line sca
ning sequences 100 times with thed interval of 0.01 at first.
All the evolutions are different with each other. Another 5
simulations are done under the sequence of line scannin
the rings when thed interval decreases to 0.002. The sam
evolutions are not found in these simulations.

FIG. 2. Evolution of CCA withd50. The grown sequences ar
~a! clockwise~b! line scanning from above to below and from le
to right in the rings.
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FIG. 3. Evolutions of CCA in the fourth quadrant grown by line scanning from above to below and from left to right in the ring w~a!
d50.04, ~b! d50.07, ~c! d50.12, ~d! d50.17, ~e! d50.20, ~f! d50.27, whereh t is the total occupation percentage andD4 is the fractal
dimension.
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Figure 4~a! shows radius~i! dependence of the occupatio
percentage~h! in a ring in the first quadrant and fourth qua
rant with d50 in the case of line scanning sequence, wh
h is defined as the ratio of the number of the occupied s
to that of all the sites of the ring of~i 211d, i 1d# in the
quadrant. The occupation percentages in the 1st quadran
quite close with small random fluctuations. However, theh
of the fourth quadrant show strong fluctuations and a re
larity can be found from random fluctuations. There are s
den rises ofh in the curve ofh2 i . The abrupt raising sites
are marked with the serial numbers of the ring in the evo
tion. It can be easily found that the serial numbers incre
with a power law of 2n. The variations ofh in the first
quadrant and fourth quadrant withi at d50.2 are also plotted
in Fig. 4~b!. The situation ofh of the first quadrant has n
obvious change, while that of the fourth quadrant is qu
different. Although the fluctuations are still random and re
tively large, the regularity disappears. This situation is sim
lar with other d.0 and the variations are sensitive to t
initial value of d.

The total occupation percentagesh t in each quadrant hav
been examined whend increases from 0 to 1.h t has no large
variation in the first or third quadrant. It ranges from 0.463
0.488. In the fourth quadrant,h t is generally less than that i
the first or third quadrant and sensitive to the initial value
d. The upper limit ofh t in this quadrant is 0.477, but th
lowest limit of h is only 0.133, corresponding to the lowe
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FIG. 4. Radius~i! dependence ofh in the first quadrant and

fourth quadrant~a! d50 ~b! d50.2.
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fractal dimension in the case of formation of Siepinski g
ket. According to the growth rule, the cluster formed by th
CCA is infinite. But the occupation percentages at every
tial value of d are less than the threshold value of site p
colation model in square lattice~0.59!. This is due to that in
the random percolation model the formation of an infin
cluster is accompanied by the formation of many small i
lated clusters, while in the CCA model the infinite paths a
formed by the intermediate crowded growth rule, similar to
self-organization process.

As mentioned above, the fourth quadrant of the evolut
at d50 is a Sierpinski triangle gasket. It is a regular frac
with a fractal dimension of ln 3/ln 251.584 96. Certain varia
tion happens and modulated Sierpinski triangle gaskets
pear in this quadrant whend.0. Fractal analysis can be use
to describe this kind of variation quantitatively.

The fractal dimension is calculated by box-counti
method: A 2563256 square is cut out from a quadrant wi
the start point at the seed site. Boxes with size« ~«<1, «
51 whenx05y05256 wherex0 andy0 are abscissas alon
X axis andY axis! are covered on the 2563256 square pat-
tern in the quadrant. The number of boxes~N! which have
occupied sites in it is counted. Changing the box size
series ofN and « can be obtained. The patterns can
viewed as fractals if the lnN- ln « curve is straight and the
slope of lnN- ln(«) within the linear range is the fractal d
mensionD.

The lnN-ln(«) curve of the fourth quadrant atd50 ~regu-
lar Sierpinski triangle gasket! shows ideal linearity at all the
studied « range. The calculated fractal dimension is ju
equal to ln 3/ln 2. The linearity of lnN- ln(«) curve atd.0 is
good too~The correlation coefficient of the lnN- ln(«) curve
at d.0 is about 0.998!. The fractal dimensionD4 at d.0 is
larger than ln 3/ln 2 due to the growth pattern atd.0 is more
compact than the regular Sierpinski triangle gasket. Figu
shows the dependence of fractal dimensionD4 of the fourth
quadrant withd. In general,D4 increases withd, but there
are many irregular fluctuations and the fractal dimensionD4
is different with each initial value ofd.

The patterns in the first quadrant can also be analyzed
fractal. The dependence of fractal dimensionD1 on d is
shown in Fig. 5 too. Although the fractal dimensionD1 is
concentrated around 1.916, there are many irregular fluc
tions in D1-d curve. The same values of fractal dimensi
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are not found with different initial value ofd, similar to the
situation of the fourth quadrant. This means the CCA
sensitive to the initial value ofd, showing its chaotic behav
ior.

The CCA presented above is a simple two-dimensio
growth model. Further work is required to develop th
model. For example, the initial size of seed and width
rings can be enlarged. This model is deterministic, but it c
be changed when a growth probability is added to the in
mediate crowded growth condition. Then this model can
used to improve our previous work of the random success
growth model for pattern formation and bacterial-colo
growth that includes also the intermediate crowded condit
@13,14#. The CCA can also be developed to the thre
dimensional space as a spherical CA with various seque
for selecting sites in the successively growing spheri
shells.

IV. CONCLUSION

In summary, a new circular CA has been introduced a
the fractal analysis has been used to discuss the t
dimensional pattern formation of CCA. The fractal dime
sions of the patterns in the first quadrant~twisty fishnet! and
fourth quadrant~modulated Sierpinski triangle gasket! are
sensitive to the initial condition of the CCA, showing th
chaotic behavior.

FIG. 5. Dependence of fractal dimension of the patterns
fourth and first quadrants ond.
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