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Fractal and chaotic behavior of circular cellular automata
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A new type of circular cellular automat€CA) has been introduced. The evolutions of the CCA obtained by
the clockwise, anticlockwise, and scanning line-by-line site sequence in the successively growing rings divided
from a square lattice are studied. The evolution seems to form a twisty fishnet when the CCA are grown by the
first two sequences. Sierpinski triangle gasket or the modulated ones are formed in the fourth quadrant of the
CCA grown by the line scanning sequence. Fractal analysis is used to characterize the relationships between
the pattern formed and the initial position of the growing ring and it is found that the pattern is very sensitive
to the initial growth condition, showing the chaotic behavior.
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I. INTRODUCTION 1. MODEL OF THE CIRCULAR AUTOMATON

It is well known that the original one-dimensional linear
Cellular automatgCA) are nonlinear systems in which cellular automata were grown line by line in one direction
space, time, and states are discrete. Their enormous compard the sites in a line are updated in parallel. But CCA is a
tation speed and complex dynamical behavior make thernwo-dimensional model, so that the space is divided by con-
widely applicable to modeling natural phenomena. Genertinuously growing rings with the same width. All the sites in
ally, CA may be described in terms of two concepts: configu-a ring are considered to be grown successively. In this CCA
ration and transition rule. Various rules produce differentmodel, the growth in each ring is not synchronous and dif-
evolution patterns. Wolfrarfil] studied all the evolutions of ferent sequences for selecting sites are applied. The state of a
the one dimensional linear CA.CA) and found that they local site depends not only on the states of sites at the last
can be reduced to four classes: homogeneous @&tiass ), period but also on the states of the nearest sites at current
separated simple stable or periodic structyamass 1), cha-  period.
otic pattern(class Il) and complex localized structures  The CCA are constructed as follows: A seed with a value
(sometimes long-lived(class I\). Sales, Martins, and Mor- of one (indicated by a dark dptis placed at the center of a
eira [2] found that the Hurst exponent of the spatial andsquare lattice. All the sites in the rifg— 1+ 8, i + 8] with a
temporal configurations of LCA can detect the existence ofvidth of one(i=1,2, ... j+ ¢ is the inner radius of the rings
long-range correlation in the evolution patterns of class IVand 0< §<1) are the next sites to be considered to grow or
and a subclass of class Il. The relationship between LCA andot to grow. A local site is considered to grqshange from
fractals has been given by Willsd,4] and that between 0 to 1) only when just one nearest site is a dark dot among
LCA and multifractal by Takahaslib]. CA can also be two the four nearest sites, and is considered not to grow when no
dimensional such as the famous game of [8¢ Recently, Site(too along or two sites(too crowded are dark dots. This
CA have been widely used for modeling crystal grOWth,cond_ition can be called the intermediate croyvded con_dition.
earthquaké7], excitable medi8], granular flow{9], diffu- It is well known that the evolution of LCA is determined
sion [10], traffic flow [11,12, and other problems of self by the update rule in parallel, i.e., the influence of neighbor-
organization. ing sites in a line is not cons@ered. C_ontrary to LCA, an-
Most of the LCA can be used to simulate one-dimensionaPther _|mportant_cond|t|on_ of this CCA IS the sequence for
growth and flow, but the actual growth and flow usually hap-SGIGCtIng sites n each fing qf_ 1+, i+ 5].‘ Three e
pen in two- or three-dimensional space. Here, we present uencegclockwise, anticlockwise, and scanning line by line
; fom above to below and from left to right in the ringre
model of a circular cellular automat&CA) grown on two-

. ) . . . . . ._considered in this paper. The purpose of this paper is to
dimensional lattice with a simple transition rule. This CCAis introduce the CCA model with the sequences for selecting

sensitive to the sequence for selecting sites in the SUCCe§jeg 5o that the intermediate crowded condition can be in-
sively growing rings divided from a square lattice and theirq)geq. It is found that complex and interesting patterns can

initial positions. We have suggested a random successiVi§e formed with the change of the simple selecting sequence.
growth model with a suitable crowded condition for simulat- | the following text, we call the third sequence as line scan-
ing the fractal crystallization in an amorphous film and ning for convenience.

colony growth patterngl3,14. Now the CCAis a determin-  |n this model, there are two variable initial conditions.
istic model, which can generate fractals, including the fa-One is the initial value o5, and the other is the selecting
mous Sierpinski triangle gasket. The fractal dimension casequence in the rings. Figure 1 is the sketch of this model
be used to characterize the patterns produced by the CCwith §=0 grown by the line scanning sequence, where |, Il,
and to show their chaotic behavior. I, and IV indicate the first, second, third, and fourth quad-
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FIG. 1. Sketch of circular cellular automat@CA) model.

rants. The numbers labeled in the figure are the serial num
bers of rings. There are four sites in the first ring(0f 1],

and 8, 16, 20, 32, 32,...sites in next rings i( (a)
=2,3,4,5...) whens=0. The dark dots and the open dots

represent those sites grown or not, respectively, c, d, e,

f, g in the sixth ring show the site sequence determined by
the line scanning sequence. The grown sites in the first quad
rant and the third quadrant show mirror symmetry, while
those in the second quadrant and the fourth one are not. I
the second quadrant, no more sites are grown except the site
on X axis andY axis or a part of sites neighboring these axes.

IIl. RESULTS AND DISCUSSION

Figures 2a) and Zb) are the evolution of CCA with
6=0, wherei <365. The grown sequences are clockwise and
line scanning in the rings, respectively. Each quadrant of Fig.
2(a) seems to be a twisty fishnet and the figure displays 90°
rotation symmetry. The anticlockwise figure shows mirror
symmetry to that of the clockwise pattern. As to the Fig.
2(b), although the first quadrant is the same as that of Fig.
2(a) and the third quadrant is the same as that of anticlock-
wise pattern, most of the sites in the second quadrant cannc
grow and interestingly, the pattern in the fourth quadrant is
the famous Sierpinski triangle gasket. Figutb)dtself has a
symmetric mirror at an angle of 45° with th€axis. (b)

Figures 3a), 3(b), 3(c), 3(d), 3(e), and 3f) are the evolu- ) )
tions of CCA in the 4th quadrant with=0.04, 0.07, 0.12, FIG. 2.. Evolutllon of CQA withé=0. The grown sequences are
0.17, 0.20, 0.27 grown by the line scanning sequence in th@) plockwnse(b_) line scanning from above to below and from left
rings. The evolution changes due to the sites and their nunf® fight in the rings.
ber in each ring are different from that 6& 0. The patterns
formed in the first quadrant and the third are similar to Fig.

2(b). The patterns in the fourth quadrant are composed o$canning sequence in the first and third quadrants. So we can
many big or small empty triangles different from the regularget the modulated Siepinski gasket with 90° rotation symme-
Sierpinski gasket and can be called as modulated Sierpinskiy with various sequence of selecting sites in the first, sec-
gasket. They are symmetric with a mirror axis at 45° with theond, third, and fourth quadrants.

X axis. All the second quadrants with variodsare nearly We simulate CCA with the above clockwise and line scan-
empty. If the sequence for selecting sites in the second quading sequences 100 times with thénterval of 0.01 at first.

rant is changed to line scanning from below to above andhll the evolutions are different with each other. Another 500
from left to right, we will obtain the same patterns as that ofsimulations are done under the sequence of line scanning in
Fig. 3 instead of the nearly empty quadrant shown in Figthe rings when theS interval decreases to 0.002. The same
2(b). The same patterns can be obtained by the vertical linevolutions are not found in these simulations.
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FIG. 3. Evolutions of CCA in the fourth quadrant grown by line scanning from above to below and from left to right in the ring)with
6=0.04,(b) §=0.07,(c) 6=0.12,(d) 6§=0.17,(e) 6=0.20,(f) 5=0.27, wherey, is the total occupation percentage dbgl is the fractal
dimension.

Figure 4a) shows radiugi) dependence of the occupation 1g
percentagey) in a ring in the first quadrant and fourth quad-
rant with =0 in the case of line scanning sequence, where
7 is defined as the ratio of the number of the occupied sites 0.1
to that of all the sites of the ring df —1+ 6, i+ 6] in the
guadrant. The occupation percentages in the 1st quadrant are =
quite close with small random fluctuations. However, the 0.01F
of the fourth quadrant show strong fluctuations and a regu-
larity can be found from random fluctuations. There are sud-
den rises ofy in the curve ofyp—i. The abrupt raising sites 0.001
are marked with the serial numbers of the ring in the evolu-
tion. It can be easily found that the serial numbers increase I
with a power law of 2. The variations ofy in the first
guadrant and fourth quadrant witlat 5= 0.2 are also plotted 1 (b) ]
in Fig. 4(b). The situation ofy of the first quadrant has no
obvious change, while that of the fourth quadrant is quite
different. Although the fluctuations are still random and rela-
tively large, the regularity disappears. This situation is simi-

8=0
— 4th quadrant
------ 1st quadrant 3

256

oF

100 200 300 400

lar with other >0 and the variations are sensitive to the i

initial value of 6. T ath quadrant
The total occupation percentagesin each quadranthave | ©~ % 1st guadrant

been examined whefiincreases from 0 to Iy, has no large ol

variation in the first or third quadrant. It ranges from 0.463 to 10 100 200 300 200
0.488. In the fourth quadrani is generally less than that in ;

the first or third quadrant and sensitive to the initial value of

6. The upper limit of , in this quadrant is 0.477, but the FIG. 4. Radius(i) dependence of; in the first quadrant and
lowest limit of  is only 0.133, corresponding to the lowest fourth quadranta) =0 (b) §=0.2.
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fractal dimension in the case of formation of Siepinski gas-
ket. According to the growth rule, the cluster formed by this
CCA is infinite. But the occupation percentages at every ini- <
tial value of § are less than the threshold value of site per- o
colation model in square lattig®.59. This is due to that in
the random percolation model the formation of an infinite 1510 . . L -
cluster is accompanied by the formation of many small iso- 1.924 - ' T -
lated clusters, while in the CCA model the infinite paths are 1.920
formed by the intermediate crowded growth rule, similartoa _— 4 946
self-organization process. a -
As mentioned above, the fourth quadrant of the evolution 1912
at 6=0 is a Sierpinski triangle gasket. It is a regular fractal 1-90% 5 0'2 0'4 0'6 0'8 o
with a fractal dimension of In 3/In21.584 96. Certain varia- ' ’ ' ' ' ’
tion happens and modulated Sierpinski triangle gaskets ap- 3

pear in this quadrant whes>0. Fractal analysis can be used
to describe this kind of variation quantitatively.

The fractal dimension is calculated by box-counting
method: A 256256 square is cut out from a quadrant with gre not found with different initial value of, similar to the

the start point at the seed site. Boxes with siz&<1, &  gjwyation of the fourth quadrant. This means the CCA are

=1 whenxo=yo=256 wherex, andy, are abscissas along sensitive to the initial value of, showing its chaotic behav-
X axis andY axis) are covered on the 256256 square pat- o,

tern in the quadrant. The number of box@$ which have The CCA presented above is a simple two-dimensional
occupied sites in it is counted. Changing the box size, growth model. Further work is required to develop this
series ofN and & can be obtained. The patterns can bemodel. For example, the initial size of seed and width of
viewed as fractals if the IN-Ine curve is straight and the (jngs can be enlarged. This model is deterministic, but it can
slope of InN-In(¢) within the linear range is the fractal di- pe changed when a growth probability is added to the inter-
mensionD. mediate crowded growth condition. Then this model can be
The InN-In(e) curve of the fourth quadrant @=0 (regu-  ysed to improve our previous work of the random successive
lar Sierpinski triangle gaskeshows ideal linearity at all the  growth model for pattern formation and bacterial-colony
studied £ range. The calculated fractal dimension is justgrowth that includes also the intermediate crowded condition
equal toln3/In2. The |inearity of IN- |n(8) curve at6>0 is [13’14} The CCA can also be deve|oped to the three-
good too(The correlation coefficient of the i-In(e) curve  dimensional space as a spherical CA with various sequences
at 6>0 is about 0.998 The fractal dimensioD, at 6>01is  for selecting sites in the successively growing spherical
larger than In 3/In 2 due to the growth patternsatO is more  shells.
compact than the regular Sierpinski triangle gasket. Figure 5
shows the dependence of fractal dimendipnof the fourth
qguadrant withé. In general,D, increases withs, but there
are many irregular fluctuations and the fractal dimengn In summary, a new circular CA has been introduced and
is different with each initial value o#. the fractal analysis has been used to discuss the two-
The patterns in the first quadrant can also be analyzed bgimensional pattern formation of CCA. The fractal dimen-
fractal. The dependence of fractal dimensibR on § is  sions of the patterns in the first quadramtisty fishnej and
shown in Fig. 5 too. Although the fractal dimensi@n is  fourth quadrant(modulated Sierpinski triangle gaskedre
concentrated around 1.916, there are many irregular fluctuasensitive to the initial condition of the CCA, showing the
tions in D4-6 curve. The same values of fractal dimensionchaotic behavior.

FIG. 5. Dependence of fractal dimension of the patterns in
fourth and first quadrants ofi

IV. CONCLUSION
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